

A Comparison of Verilog Synthesis Frontends

Daniel Stokes

Daniel Stokes*, Georgiy Krylov[†], Jean-Philippe Legault[†], Panos Patros*, Kenneth B. Kent[†]

* ORKA Cloud and Adaptive Systems Lab, Department of Software Engineering, University of Waikato, Aotearoa New Zealand djns1@students.waikato.ac.nz, panos.patros@waikato.ac.nz ORCiD: 0000-0002-1366-9411

⁺ Centre of Advanced Studies-Atlantic, Faculty of Computer Science, University of New Brunswick, Canada georgiy.krylov@unb.ca, jlegault@unb.ca, ken@unb.ca

Introduction

- Comparison of Odin-II and Yosys
- Both Verilog synthesis tools
- Odin-II is part of the Verilog-To-Routing (VTR) project
- Yosys is part of the SymbiFlow project

Centre for Advanced Studies-Atlantic

Motivation

- Field Programmable Gate Arrays (FPGAs) are a versatile tool
 - Useful for rapid prototyping, testing and research
 - More flexible than than Application Specific Integrated Circuits
 - Lower upfront costs
- Open-source flows enables easier research
 - Experimental FPGA designs
 - New synthesis techniques

Existing Work

- Hung^{*} demonstrated that Yosys tends to perform better, but Odin-II is ahead in some aspects
- Missing some runtime metrics
- Significant improvements in both tools since

Area Utilisation for a range of Verilog benchmarks. Lower is better.

*E. Hung, "Mind the (synthesis) gap: Examining where academic FPGA tools lag behind industry," 2015 25th International Conference on Field Programmable Logic and Applications (FPL), London, 2015, pp. 1-4, doi: 10.1109/FPL.2015.7294007.

- Computer Aided Design (CAD) flow for FPGAs
- Open Source
- Written in C/C++

THE UNIVERSITY OF

Te Whare Wananga o Waikat

WAIK

Centre for Advanced Studies-Atlantic

Centre for Advanced Studies-Atlantic

THE UNIVERSITY OF

SymbiFlow

- Open Source project targeting commercial FPGAs
- Uses Yosys and VPR

Experiment Outcomes

- Produce a framework for future comparison
 - Against different architectures
 - Against different benchmarks
- Compare Quality of Result (QoR) of both tools
- Compare runtime characteristics of both tools

Oceania Researchers in Cloud & Adaptive-systems **ORKA Lab** Ohu Rangahau Kapua Aunoa

Computer Science WAIKATO **Centre for Advanced Studies-Atlantic** Te Whare Wananga o Waikate

THE UNIVERSITY OF

Full Benchmark Flow

Benchmark Methodology

- Select a range of compatible benchmarks
- Run each benchmark through both tools
 - This was repeated when gathering runtime statistics
- Run through VPR 10 times
 - VPR placement is non deterministic
- Gather QoR metrics output by VPR
 - Critical path delay, Logic area used
- Gather runtime metrics for each stage
 - Max. Resident Set Size (RSS), Total runtime

Artix-7 XC7A200T Architecture

- Popular line of FPGAs
- Provides benchmarks with real world basis
- Large enough for all benchmarks to place androute
- SymbiFlow project has built a VPR architecture description

Centre for Advanced Studies-Atlantic

Benchmarks

ORKA Lab

- Benchmark from VTR's benchmark suite
- Supported by Odin-II
- Cover a wide range of real world uses
- Variety of sizes

Benchmark	Domain
and latch	Trivial
bgm	Finance
blob merge	Image Processing
diffeq1	Math
diffeq2	Math
$\mathrm{mkPktMerge}$	Packet Processing
multiclock output and latch	Trivial
multiclock reader writer	Trivial
sha	Cryptography
single ff	Trivial
single wire	Trivial
stereovision0	Computer Vision
stereovision1	Computer Vision
stereovision 2	Computer Vision
stereovision3	Computer Vision

Results - Critical Path Delay

- Determines the maximum clock frequency
- Yosys geomean 86% of Odin-II

Normalised critical path delay of Odin-II vs Yosys flow

Results - Critical Path Delay >1000 blocks

Only benchmarks
 with >1000 blocks
 when synthesized
 with Odin-II

ORKA Lab

• Yosys geomean 66% of Odin-II

Normalised critical path delay of Odin-II vs Yosys flow for benchmarks with >1000 blocks

Results - Logic Area Used

- Influences the minimum size FPGA
- Influences power consumption
- Yosys geomean 89% of Odin-II

Computer Science

Centre for Advanced Studies-Atlantic

Normalised logic area used for Odin-II vs Yosys flow

Results - Logic Area Used >1000 Blocks

 Only benchmarks with >1000 blocks when synthesized with Odin-II

ORKA Lab

• Yosys geomean 91% of Odin-II

Normalised logic area used for Odin-II vs Yosys flow for benchmarks with >1000 blocks

Centre for Advanced Studies-Atlantic

Results - Synthesis Memory Consumption

- Measures Maximum
 Resident Set Size (RSS)
- Includes ABC, but not VPR
- Yosys geomean 510% of Odin-II
- Relevant for
 - Small architectures
 - Verilog synthesis research
 - Circuit simulation

Max. RSS (KiB) for Odin-II vs Yosys synthesis

Results - VPR Memory Consumption

- Measures max. RSS
- Only includes VPR
- Much larger than max. RSS for synthesis step
- Dominated by architecture size
 - For smaller architectures synthesis may dominate

Max. RSS (KiB) of VPR in Odin-II flow vs Yosys flow

Computer Science Centre for Advanced Studies-Atlantic

Results - Synthesis Run Time

- Total run time of synthesis
- Only benchmarks >1000 blocks
 - Otherwise launch
 overheads dominate
- Includes ABC, but not VPR
- Yosys geomean 40% of Odin-II

Total runtime for Odin-II vs Yosys synthesis

Results - VPR Run Time

- Total run time of VPR
- Only includes VPR
- Only benchmarks
 >1000 blocks
- Yosys geomean 119% of Odin-II

Centre for Advanced Studies-Atlantic

Computer Science

Total run time of VPR in Odin-II flow vs Yosys flow

Results - Total Flow Run Time

- Total run time for entire flow
- Only benchmarks
 >1000 blocks
- Synthesis + VPR time
- Yosys geomean 67% of Odin-II

Combined runtime for full Odin-II vs Yosys flow

Limitations

- Yosys has been tuned against the Artix-7 family used in this comparison
- Technology mapping was disabled for this comparison
 - This ensured a fair comparison as Odin-II did not recognise the hard-blocks in the XC7A200T architecture
 - An important feature for real use cases
- The benchmarks used come from Odin-II's benchmark suite

Future Work

- Compare a broader range of architectures
- Compare a broader range of benchmarks
 - This may require improvement to Odin-II's language coverage
 - Titan Benchmark suite is a modern candidate
- Add hard-block support for Artix-7 family to Odin-II
 - Revisit this comparison with technology mapping enabled

Computer Science Centre for Advanced Studies-Atlantic

Conclusion

- How do Odin-II and Yosys compare?
- Produced a framework to compare synthesis flows
 - Supports different architectures
 - Supports different benchmarks
- Gathered QoR and run time metrics for both tools
- Yosys tends to outperform Odin-II in most applications
 - Better in most run time and QoR metrics
- Odin-II synergises well with VPR out of the box